Global convergence and the Powell singular function

نویسندگان

  • Trond Steihaug
  • Sara Suleiman
چکیده

The Powell singular function was introduced 1962 by M.J.D. Powell as an unconstrained optimization problem. The function is also used as nonlinear least squares problem and system of nonlinear equations. The function is a classic test function included in collections of test problems in optimization as well as an example problem in text books. In the global optimization literature the function is stated as a difficult test case. The function is convex and the Hessian has a double singularity at the solution. In this paper we consider Newton’s method and methods in Halley class and we discuss the relationship between these methods on the Powell Singular Function. We show that these methods have global but linear rate of convergence. The function is in a subclass of unary functions and results for Newton’s method and methods in the Halley class can be extended to this class. Newton’s method is often made globally convergent by introducing a line search. We show that a full Newton step will satisfy many of standard step length rules and that exact line searches will yield slightly faster linear rate of convergence than Newton’s method. We illustrate some of these properties with numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Numerical Method to Solve the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid

In this paper, the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linearly stretching sheet is solved using the combination of the quasilinearization method and the Fractional order of Rational Chebyshev function (FRC) collocation method on a semi-infinite domain. The quasilinearization method converts the equation into a sequence of linear equations then, using the FRC coll...

متن کامل

Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel

In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The  Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....

متن کامل

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013